Introduction to SQL: 03 – Advanced Queries.

Part of the DAFS Brown Bag Tech Series

Instructor: Charley Jones, me@crjones.com, 
Certifications: A+, MOUS, MCP, MCSE, MCSA, MCBDA

Course Website: www.crjones.com/sql
Review:

Relationships consist of keys.  Parent has a Primary Key or Alternate Key and child has the Foreign Key.  We build relationships in the Relationship Window and can cascade changes and deletions from parent to child.
We build queries in the Query designer.  We can do this either graphically or by direct text input.  Queries can be made parameterized by putting a condition in []’s.  We can also sort fields by fields in queries.

The basic syntax for a Select statement is:

SELECT FIELDS

FROM TABLES

WHERE CONDITION

ORDER BY FIELDS

There are five basic join types: Inner, Left, Right, Full, and Cartesian.

Class Challenge:


SQL-2-1:


Create a PhoneList database,


That has lists of Students and Phone Numbers.


Phone Number should have at least 3 fields, StudentID, PhoneType, Number.


You should be able to add an unlimited amount of PhoneTypes (Cell, Home, 

Work) per student .

[image: image18.emf]

[image: image19.emf]

[image: image20.emf]

[image: image21.emf]

[image: image22.emf]

[image: image1.emf]



[image: image23.emf]


          
SQL-2-2:

Generate a parameterized query for SQL-2-1 that lists StudentName and Phone 

number for a given PhoneType.
[image: image2.emf]


SELECT Students.Name, PhoneNumbers.Number

FROM Students INNER JOIN PhoneNumbers 

ON Students.StudentID = PhoneNumbers.StudentID

WHERE (((PhoneNumbers.PhoneType)=[Phone Type?]))

ORDER BY Students.Name;
[image: image3.emf]


SQL-2-3:

Generate a query for SQL-2-1 that shows all students missing any phone 

numbers.
[image: image4.emf]


SELECT Students.Name

FROM Students LEFT JOIN PhoneNumbers ON Students.StudentID = PhoneNumbers.StudentID

WHERE (((PhoneNumbers.PhoneType) Is Null))
ORDER BY Students.Name;


Notice how we use a Left Join to force the appearance of NULLs in the Phone table part of the query… and then filtered base on NULLs.

Today we’ll be looking at some statistical queries.
First, continuing with our homework example, we’d like a count of the number of students in the students table.

COUNT

We could manually count up all the records, or we could use the count function.

COUNT(*) is the count function.  Remember that * is all fields?  Well, this is a count of all fields.  We could have also said Count(Name) but Count(*) is a bit more common.
SELECT COUNT(*) AS MCOUNT FROM STUDENTS

[image: image5.emf]


How about a count of students with work phone numbers?
That’s actually quite similar to exercise 2 and we can steal the Sql from there!

SELECT Count(*) as MCOUNT

FROM Students INNER JOIN PhoneNumbers 

ON Students.StudentID = PhoneNumbers.StudentID

WHERE (((PhoneNumbers.PhoneType)=’Work’))

[image: image6.emf]


Count is called an Aggregate function.  Aggregates work over a series of records.

Other aggregate functions include Sum, Avg, 

GROUP BY


Now, let’s get a bit trickier.

The count of students by phone type.



For this we need to chunk the data into groups.

For this we use the Group By / Having clause.

This extends the basic syntax as follows:

SELECT FIELDS

FROM TABLE 

 JOIN TABLE ON CONDITION

WHERE CONDITION

GROUP BY FIELDS

 HAVING CONDITION
ORDER BY FIELDS

            HAVING is like a WHERE clause for each Group.


To use Group By in this example,

SELECT PhoneType, Count(*) as MCOUNT

FROM PhoneNumbers 

Group By PhoneType

Order By PhoneType
[image: image7.emf]


And to limit groups with only 2 or more members add the HAVING Clause: SELECT PhoneType, Count(*) as MCOUNT

FROM PhoneNumbers 

Group By PhoneType
 Having COUNT(*)>2
Order By PhoneType
[image: image8.emf]


Moving On:

Let’s add a Tests table to records our student’s scores.


[image: image9.emf]



Now let’s run some new aggregates on the data:

How about the average score on the 70-215 test?


SELECT AVG(Score) FROM TestScores where TestID=”70-215”

[image: image10.emf]


How about every test and average?
SELECT TestID, AVG(Score) 
FROM TestScores
GROUP BY TestID
[image: image11.emf]



And just to keep things interesting.


How about the sum of all scores?


SELECT SUM(Score) FROM TestScores

[image: image12.emf]


DISTICNT


We seem to be having problems with wrong TestID’s getting entered.

We can do this by creating a “look-up” table for TestScores,


But first we’d like to see a list of test id’s used.

We could do SELECT TestID FROM TestScores


But then we’d get every test.



DISTINCT is used to modify a select statement,


So that it returns only unique data.


We can use:
SELECT DISTINCT TestID from TestScores
[image: image13.emf]


We can also capture this output to another permanent table with the INTO Clause.
That would be something like:
SELECT DISTINCT TestID 
INTO TestTypes 
FROM TestScores


And then link it back into our relationships.


(We first need to edit TestTypes:TestID to Text:10, and set that as a primary key!)

Sometimes the best source of data is the tables themselves.
[image: image14.emf]


One last word of note on Selects:

Access writes some pretty beefy Select Statements.

Lots of parenthesis and table names.

In Sql, we like to use shorter alias,

And keep things formatted and readable.

To make this work, specify a short name (as short as one character)

After the table name in the FROM clause.
For examples: STUDENTS S

Anywhere the full table name STUDENTS was required can be replaced with the S.

This is a little more cryptic, but makes SQL much more readable.

One of those earlier Sql Statements:
SELECT Students.Name, PhoneNumbers.Number

FROM Students INNER JOIN PhoneNumbers 

ON Students.StudentID = PhoneNumbers.StudentID

WHERE (((PhoneNumbers.PhoneType)=[Phone Type?]))

ORDER BY Students.Name;

Can be rewritten as:

SELECT S.Name, P.Number

FROM Students S INNER JOIN PhoneNumbers P

ON S.StudentID = P.StudentID

WHERE P.PhoneType=[Phone Type?]

ORDER BY S.Name;

Great,

Now that we can select data all these different ways,

How about editing and deleting data.

The four major actions in any database system are:
SELECT, UPDATE, INSERT, AND DELETE.

UPDATE’ng data:

The update command is very similar to the Select Statement.


UPDATE TABLE


SET FIELD = VALUE


(FROM TABLE JOIN TABLE ON)

   
WHERE CONDITION


And in a simple example:


UPDATE PHONETYPES


SET PHONETYPE = ‘Cellular’


WHERE PHONETYPE = ‘Cell’


And to see the result


SELECT (*) FROM PHONETYPES

[image: image15.emf]



And take a quick look at all the different phone types in the PhoneNumbers table.

SELECT DISTINCT PHONETYPE FROM PHONENUMBERS


[image: image16.emf]



But wait, we only changed the PhoneTypes table?

How did the PhoneNumbers table changed also.

The answer is cascade updates and deletes.
Updates to the PhoneTypes table to automagically cascaded downwards.

[image: image17.emf]



Updating more than one field at time.


You can update multiple fields at a time.


The syntax is SET FIELD=VALUE, FIELD=VALUE, FIELD=VALUE


UPDATE T


SET SCORE=920


FROM TestScores T LEFT JOIN Students S


On T.StudentID = S.StudentID


WHERE T.TestID=’70-215’


AND S.Name=’Charley Jones’


(Of course, it would have been easier to write:)


UPDATE Testscores


SET SCORE=920

WHERE TestID=’70-215’


AND StudentID=1


(But not as much fun.)

DELETE


You can delete one or more records with the DELETE command.

DELETE 
FROM TABLE


WHERE CONDITION


As in:


DELETE FROM STUDENTS


WHERE STUDENTID = 4


Notice:

SELECT * FROM TESTSCORES WHERE STUDENTID=4 


Does not return any records.

Why?  Cascade delete!

To DELETE all records from a table,

The command is:

DELETE FROM STUDENTS.


This deletes every record from the table.


There’s an even faster way of executing the same command:


TRUNCATE TABLE STUDENTS.


This simply erases all contents of the table and is faster.

INSERT

The last of the major SQL commands is INSERT.
The basic syntax is:

INSERT INTO

TABLE (FIELDLIST)

VALUES (VALUELIST)

-or-

INSERT INTO

TABLE (FIELDLIST)

SELECT STATEMENT

In either statement, we must skip any autonumber fields in the FIELDLIST.
And example of this is:

INSERT INTO 

TESTTYPES (TestType)

VALUES (‘70-220’)

INSERT INTO 

TESTSCORES (StudentID, TestType, Score)

VALUES (1,’70-220’,890)

Notice that we had to add a new test type 70-220 to the lookup table,

Before we could add the TestScore record.

Consider a new table called GRADUATES

This is the same structure as Students,

But the StudentID is not an Autonumber,

Just a long integer.

A quick way of copying graduate students forward is:

INSERT INTO GRADUATES

SELECT * FROM STUDENTS

Summary:

As you can see,

We’re into the nitty gritty of SQL now.

The examples will all work in Access.

Next week we’ll look at some differences in Sql Server.

In the coming weeks we’ll look at Stored Procedures, Functions, and Triggers.
Exercises:

Using the Students Table and SQL commands only:


SQL-3-1: 


Copy all Students, TestScores, and PhoneNumbers

to Graduates, GraduatePhones, and GraduateTests.


SQL-3-2: 

Erase Students, TestScores, and PhoneNumbers.

SQL-3-3: 

Update Test 70-215 to 70-315

SQL-3-4: 

Insert 4 new students, phone numbers, and test scores.




































Introduction to SQL
- 2 -

03 – Advanced Queries

