Introduction to SQL: 05 – Views, Stored Procedures, User Defined Functions.
Part of the DAFS Brown Bag Tech Series

Instructor: Charley Jones, me@crjones.com,
Certifications: A+, MOUS, MCP, MCSE, MCSA, MCBDA

Course Website: www.crjones.com/sql

Review:
Last week we worked we installed MSDE, Microsoft Sql Develeopment Enginie, and looked at Service Manager, Enterprise Manager, and Query Analyzer. We’ll complete last week’s exercises by using those tools, and being our look at programming in SQL.

Exercises:

SQL-4-1:

Execute the Sql Statements given as a solution to SQL-3-1 through SQL-3-4 in the MSDE environment.

Repeat query statements as stated using Query Analyzer.
Just a note, when we imported tables Access, Primary Keys and Autonumbers were dropped. Must read these attributes in Sql.

SQL-4-2:

Create a query to show the graduate test scores.

SELECT G.NAME, T.TESTID, T.SCORE

FROM GRADUATES G LEFT JOIN GRADUATETESTS T

ON G.STUDENTID = T.STUDENTID

SQL-4-2:

Create another query to show the graduate phone numbers.

SELECT G.NAME, P.PHONETYPE, P.NUMBER

FROM GRADUATES G LEFT JOIN GRADUATEPHONES P

ON G.STUDENTID = P.STUDENTID

Views:

View can be created in Enterprise Manager, much the same as they can be created in Access.

1) Start Enterprise Manager

Drill down to Server, Databases, Database, Views

Right click to add New View
[image: image1.emf]

2) Right click to Add Tables,
Drag and drop relationships (if not set)

Check the fields to display

And hit the run icon.
[image: image2.emf]

3) Close view to save.

We usually name views beginning with vw, ie: vwStudentPhoneList.
Or the more old fashioned, q for query, ie: qStudentPhoneList.

Limitations on Views:

This isn’t Access any more!

No parameters allowed!

No “ORDER BY CLAUSE ALLOWED”

Can’t update views with Joins or Aggregates!

Work Arounds:

Parameters: we can use Stored Procedures instead.

Order by: Chucky’s TOP 100 ORDER BY trick.

SELECT TOP 100 PERCENT * FROM STUDENTS

 ORDER BY NAME

Update Views: Where there’s a will, there’s a trigger!

Views the Hard Way:

We can directly record views by using the following syntax:
CREATE VIEW [database_name].[owner.] view_name

[(column [, column [, ..])]

[WITH SCHEMABINDING | ENCRYPTION | VIEW_METADATA]

AS

select_statement

[WITH check_option]

In English?

CREATE VIEW dbo.qStudentPhoneList

AS SELECT TOP 100 PERCENT FROM STUDENTS ORDER BY NAME

GO

dbo stands for Data Base Owner,

And is part of the 4 part naming convention.

Server.Database.Owner.Table

To avoid confusion, always use dbo when creating or using objects.

Using a View:

Select * From View

Select * from dbo.qStudentPhoneList

Views can be based on other views, up to 32 nested levels deep!

Stored Procedures:

Mini SQL programs that can accept and return values.

Can be created in Enterprise Manager,

Or via Sql Scripts in Query Analyzer:

CREATE PROC [EDURE] procedure_name [; number]

 [{ @parameter data_type }

 [VARYING] [= default] [OUTPUT]

] [,...n]

[WITH

 { RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION }]

[FOR REPLICATION]

AS sql_statement [...n]

GO

A Sample Stored Procedure:

CREATE PROC spStudentPhone

@StudentID Int

AS

SELECT PHONETYPE, NUMBER

FROM PHONENUMBERS

WHERE STUDENTID=@StudentID

To edit,

First DROP the Stored Procedure

Use the ALTER PROCEDURE command.

Retains all rights and privileges.

Alternate method:

DROP PROC spStudentPhone

And Re-Create, but loses all rights and privileges.

To Execute:

EXECute PROCedure Prodecure Paramaters

Exec Proc spStudentPhone 1

Stored procedures may also involve more complex logic, error handling, and much much more. We’ll get into a bit more detail next week. For now, they’re a great replacement for parameterize views.

UDF’s

User defined functions:

Can be created, of course, in Enterprise Manager

Or the more fun, Query Analyzer way:

CREATE FUNCTION [owner].function_name

([@parameter <scalar data type> [= default value] …)

{RETURNS { scalar type | TABLE }

[WITH ENCRPYPTION | SCHEMA BINDING]

AS

BEGIN

Function statements]

{RETURN {<scalar type defined in RETURNS above> | (select statement) } }

END

Can be Scalar Valued:

Return exactly one value: An Integer, A String

CREATE FUNCTION dbo.adds

(@p1 int = 0, @p2 int = 0)

RETURNS int

AS

BEGIN

DEFINE @RET AS INT

SET @RET = @p1 + @p2

RETURN @RET

END

SELECT dbo.ADDS(1,2) AS MSUM

Observe: 3

Or Table Valued:

Returns a set of records.

CREATE FUNCTION dbo.udfTestScores

(@mStudentID int)

RETURNS TABLE

AS

RETURN SELECT * FROM TESTSCORES

WHERE StudentID = @mStudentID

GO

SELECT * FROM Dbo.udfTestScores(1)

Exercises:

SQL-5-1:

Write a view to view all students names and test scores.

SQL-5-2:

Write a stored procedure to return all graduate test scores given a student ID.

SQL-5-2:

Write a user defined function to return all graduate phone numbers given a

student id:

Introduction to SQL
- 1 -

05 – Views, Stored Procedures, UDF’s

