Introduction to SQL: 06 – More Stored Procedures, Triggers
Part of the DAFS Brown Bag Tech Series

Instructor: Charley Jones, me@crjones.com,
Certifications: A+, MOUS, MCP, MCSE, MCSA, MCBDA

Course Website: www.crjones.com/sql

Review:
Last week we began looking at Views, Stored Procedures, and UDFs (User Defined Functions.) This week we’ll extend our syntax and use Stored Procedures as Triggers.

Exercises:

SQL-5-1:

Write a view to view all students’ names and test scores.

CREATE VIEW dbo.qStudentTestScores

AS

SELECT TOP 100 PERCENT

S.NAME, T.TESTID, T.SCORE

FROM STUDENTS S INNER JOIN TESTSCORES T

ON S.STUDENTID = T.STUDENTID

ORDER BY NAME, TESTID

SELECT * FROM qStudentTestScores

SQL-5-2:

Write a stored procedure to return all graduate test scores given a student ID.

CREATE PROC spGraduateScores

@StudentID Int

AS

SELECT TESTID, SCORE

FROM GRADUATETESTS

WHERE STUDENTID=@StudentID

EXEC spGraduateScores

SQL-5-2:

Write a user defined function to return all graduate phone numbers given a

student id:

CREATE FUNCTION dbo.udfStudentPhoneNumbers

(@mStudentID int)

RETURNS TABLE

AS

RETURN SELECT * FROM PHONENUMBERS

WHERE StudentID = @mStudentID

SELECT * FROM Dbo.udfStudentPhoneNumbers(1)\
Basic maintenance of Stored Procedures:

DROP Procedure

Delete a SP.

SP_RENAME old_name new_name
Rename a SP

SP_HELPTEXT

Displays sp’s source.

SP_HELP

Name, Owner, Date, Parameters.

SP_DEPENDS

Dependency Information.

SP_HELPEXTENDEDPROC

Info on XP’s, DLL’s…

Note the SP_’s?

These are system stored procedures.

And are actually stored in the Master Datbase.

Kind of a global cache, public to all databases.

More Syntax:

Local Variables:

Variables used in procedures to temporarily store values.

DECLARE

{{ @local_variable data_type }

 | { @cursor_variable_name CURSOR }

 | { table_type_definition }

} [,...n]

DECLARE @CreditLimit money, @Company char(50)

Print:

Displays output text.

PRINT @S2

If Then Logic:

IF condition

Statement

ELSE

 Statement

Block Statements:

Fits many statements into places where only 1 fits.

BEGIN

 Statements

END

IF @Status=1

BEGIN

 SET @Status=0

 Print @Status

END

Return(Return_Value)

Sets a return value for procedure.

Useful for indicating error to calling procedure.

0 = Success, 1 = Failure…

EXECUTE:

[[EXEC [UTE]]

 {

 [@return_status =]

 { procedure_name [;number] | @procedure_name_var

 }

 [[@parameter =] { value | @variable [OUTPUT] | [DEFAULT]]

 [,...n]

[WITH RECOMPILE]

Execute a character string:

EXEC [UTE] ({ @string_variable | [N] 'tsql_string' } [+ ...n])

EXEC spTitleCount

We’re used to this syntax by now.

EXEC @ReturnStatus = spTitleCount @Title, @Count OUTPUT

@Return_Status as return value from function, 1 if successful.

@Title used as input,

@Count used as output.

Parameter Lists and Named Parameters.

Positional – 1 to 1 correspondence between input and output var’s.

EXEC @ReturnStatus = spTitleCount @Title, @Count OUTPUT

Named – Use Parameter Name = Variable, may skip default inputs.

EXEC @ReturnStatus = spTitleCount @Title=@MyTitle,

@Count=@MyCount OUTPUT

DEFAULT

Use Default Value.

WITH RECOMPILE
Forces recompile each time proc is run.

Nesting Level:

@@NestLevel

Used to find depth as one proc can call another.

Recompile:

Stored procedures are frozen at time of compile.

Changes to indexes and tables won’t be reflected.

Force a recompile to reanalyze tables and indexes.

Three ways:

Alter | Create Proc WITH RECOMPILE
(not effient!)

EXEC WITH RECOMPILE

Cool

SP_RECOMPILE

Cool

Error Handling:

RAISERROR ({ msg_id | msg_str } { , severity , state }
 [, argument [,...n]])
 [WITH option [,...n]]

msg_id | msg_str

Predefined error number or string

Severity:

16 is normal,

>18 user must be sysadmin,

>20 = Fatal

RaiseError(‘Employee Not Found’, 16,1)

Stores Code in @@ERROR

Use WITH LOG to write the application log

Know: Error 1205, Severity 13: Deadlock Error

USE school
GO

UPDATE students SET studentid = 2

WHERE studentid = 1

IF @@ERROR <> 0

 print ‘An error occurred during the update.’

Cursors

Hold data from a select, can step through one at a time.

DECLARE crSales CURSOR for SELECT * FROM Sales

DECLARE @SalesID as Int, @SalesAmount as Money

OPEN wCursor

FETCH NEXT FROM crSales into @SalesID, @SalesAmount

WHILE @@FETCH_STATUS=0

PRINT @SalesID

CLOSE crSales

DEALLOCATE crSales

Triggers

Stored procedures that are executed after a modification event.
INSERT, UPDATE, or DELETE

Use referential integrity vs triggers, referential more efficient.
Use check constraints for simple logic, triggers for complex.

Can evaluate state of table before and after event, store to another table.

Can assign multiple different triggers to same type on same table.

Can’t create on a temporary table.

Can reference multiple databases and servers.

Allow you to create friendly error messages as compared to constraints.

Allow you to propagate changes to denormalized tables.

Always use the least overhead to get the job done.

INSTEAD OF Triggers

New in Sql Server 2000

Can prevent INSERT, UPDATE, or DELETE through RAISERROR

Invoked INSTEAD OF the action, Insert, Update, or Delete.

Can be used to extend views that don’t allow inserts.

Non-Recursive, only execute once.

On Views or Tables.

AFTER and FOR Triggers

Exactly the same, just two different names.

Execute AFTER the constraint checks.

Most common type.

On tables only!

INSERT
INSERTED table created in memory.

DELETE
DELETED table created in memory.

UPDATE
INSERTED and DELETED tables created in memory.

CREATE TRIGGER trigger_name

ON { table | view }

[WITH ENCRYPTION]

{

 { { FOR | AFTER | INSTEAD OF } { [INSERT] [,] [UPDATE] }

 [WITH APPEND]

 [NOT FOR REPLICATION]

 AS

 [{ IF UPDATE (column)

 [{ AND | OR } UPDATE (column)]

 [...n]

 | IF (COLUMNS_UPDATED () { bitwise_operator } updated_bitmask)

 { comparison_operator } column_bitmask [...n]

 }]

 sql_statement [...n]

 }

}

Practical Example.

Saving the previous student record after an update or deletion.

Create Trigger Student_History_Update

ON [Students]

AFTER UPDATE
AS

INSERT INTO StudentsHistory
(StudentID, Name, UpdateDate)
SELECT d.StudentID, d.Name, CURRENT_TIMESTAMP
FROM deleted d

GO

For this to work.

Copy Students to StudentsHistory

Add: UpdateID Autonumber, UpdateDate – Date/Time

Delete or Update a record in Students.

Observe Student History.

Sequence of Events
Instead Of Trigger Fire
Constraints Checked
Referential Integrity Checked
AFTER (FOR) Triggers Fire
FOR INSERT/UPDATE with NULL or DEFAULT, both Fire.
FOR INSERT with no value and no DEFAULT then still Fires.

FOR UPDATE with no value and no DEFAULT then not Fired (no update!).

Permissions:

Sysadmin, db_owner, db_ddladmin

For Instead of owner of view must own all underlying tables and

 base tables.

INSTEAD OF DELETE
Not allowed on tables with cascade deletes.

INSTEAD OF UPDATE
Not allowed on tables with cascade updates.

TRUNCATE TABLE
Does not fire triggers.

WRITETEXT

Does not fire triggers.

UPDATE AND INSERT
Triggers can be fired more than once.

ONLY 1 INSTEAD OF
For Each of Insert, Update, Delete per table/view

VIEWS

Can have INSTEAD OF’s and depend on views

DEPENDENT VIEWS
Can also have INSTEAD OF’s.

AFTER TRIGGERS FIRE
Only after Constraints and Referential succeed.

WITH CHECK OPTION
Disallows INSTEAD OF on view. Remove…

INSERTED & DELETED
Tables created in memory on Insert and Delete

UPDATE TRIGGER
Creates both Inserted and Deleted tables.

INSTEAD OF

Only type that can refer to text, ntext, or image.

MULTILE TRIGGERS
Executed randomly! Can specify FIRST / LAST

SP_SETTRIGGERORDER

Used to define First/Last.

RESULTS

Should not return results – no selects!

NESTING LIMIT 32

Just as with stored procedures

ROLLBACKTRANSACTION
Kills the batch and rolls back all data.

CANNOT BE USED WITH TRIGGERS

ALTER/CREATE/DROP/RECONFIGURE DATABASE

RESTORE DATABASE/LOG

LOAD DATABASE/LOG

DISK INIT/RESIZE

Trick Question Alert:

SELECT INTO not allowed in Trigger (creates table!)

SP_RENAME old_trigger new_trigger

DROP TRIGGER trigger_name

SP_SETTRIGGERORDER trigger_name, (‘First’ | ‘Last’)

ALTER TABLE tablename DISABLE TRIGGER trigger_name

Next week we’ll continue our look at triggers and see more of their uses.
But remember, use referential integrity wherever possible.

It’s faster and easier to maintain than triggers.
Exercises:

SQL-6-1:

Develop a trigger to preserve student test scores. Indicate time of change.

SQL-6-2:

Develop a method to prevent student test scores from being deleted until the

student is removed.

Introduction to SQL
- 1 -

06 – More Stored Procedures, Triggers

